Rain Garden Overview and Design

LOUTTIT LIBRARY

274 Victory Highway • West Greenwich, RI 02817 Tel: (401) 397-3434 • Fax: (401) 397-3837

RI Residential Rain Garden Training

Presentation Outline

- What are rain gardens?
- Siting Applications
- Siting Checklist
- Site Assessment Considerations
- Rain Garden Elements
- Bioretention 101

What is a rain garden?

- Short answer:
 - A depression in the landscape designed to collect and infiltrate stormwater

 Besides performing this function, they also look really nice...

What's going on in there?

- Reduction in stormwater volume
 - Infiltration and evapotranspiration
- Filtration of coarse particles
 - Sediment and bacteria
- Pollutants retained
 - Taken up by plants (nitrogen, phosphorus)
 - Adsorbed to mulch, soils, or organic matter (metals)
 - Broken down by microorganisms and sunlight (hydrocarbons, bacteria)
 - Converted to gaseous form

A Word on Terminology...

- **BIORETENTION**: Commercial applications-engineered design, modified soils, usually have underdrains
 - RI DEM Stormwater Design and Installation Standards Manual
 - Prince George's County, MD
- RAIN GARDENS: Home-scale, not typically engineered, use existing soils
 - CRMC and RIDEM small site guidance
 - Wisconsin design manual
 - UConn design manual
 - Rutgers design manual

Different siting applications

- Take water from:
 - -Roof
 - Parking lot/road
 - -Turf/mixed use

Siting Applications: Roof

- Typically intercept gutter downspout leader
 - Can pipe directly to rain garden or run over pervious area first
- Drains to turf, sloped to garden

Siting Applications: Parking lots/roads

Either
 curbless or
 use curb cuts

Siting Applications: Parking lots/roads

Curbless

- Provide forebay or turf filter area for sediment accumulation and cleanout
 - Preserves integrity of garden
 - Easier to maintain

Siting Applications: Parking lots/roads

Siting Applications: Alternate cul-de-sac

Rain Garden Siting

Residential Rain Garden Training - West Greenwich Installation Site Checklist

FACTOR	PREFERRED	West Greenwich Library
Distance from well > 25'	Yes	Yes
Distance from septic system > 15'	Yes	Yes
Distance from foundation > 10'	Yes	Yes
Predominant Soil Texture	Sandy loam or loam	Loam
Infiltration Rate of Native Soil	2 inches/hour	4 inches/hour
Slope – less than 8%?	Less than 8%	~12" rise / 180" run = 6.6%
Proximity to drainage area	Within 30 feet	Within 30 feet
Solves existing stormwater problem (i.e. flooding, downspout into drain)?	Yes	Yes; downspout into drain
Location within drinking water supply, TMDL or SRPW area?	Yes	No
Visibility of location	High	High; in front of town library
Opportunity to use in education programs (i.e. school location)	Yes	Yes
Municipal support (labor, \$\$)	Yes	Yes; DPW in-kind labor, plant and materials \$\$
Overflow area	Yes	Yes (existing planting bed)
Full sun to partial sun	Yes	Yes

Rain Garden Siting

CHECKLIST:

- At least 10 feet from foundation with basement or where top of foundation is below ponding level
- At least 15 feet from septic system
- At least 25 feet from private drinking well
- Within 30 feet of drainage area
- Within area with Full to partial sun

Rain Garden Siting

CHECKLIST:

- Predominant Soil texture = Sandy loam or loam
- Infiltration rate = at least 1.5 inches/hour
- Slope is less than 8% (rise/run)
- Sited to most effectively catch storm runoff from roof, parking lot/driveway or slope
- Overflow area present

Rain Garden Siting

CHECKLIST:

- Avoid areas with:
 - Shallow (<3 feet) depth to bedrock
 - Seasonal high water table (<2ft from bottom)
 - Ponding water
- Be aware of the infiltration capacity of native soils

Site Assessment Considerations: Slope

width

Height / Width x 100 = % Slope

- For flat areas, no berm needed
- Moderate slopes, use berm
- Heavier slopes, use retaining wall design
- More than 12% slope, look for another location

Site Assessment Considerations: Soils

Simple Percolation Test

- Dig hole 12" deep by 6" wide and fill with water.
- If there is still water in the hole after 24 hours, the site is **not suitable** for a rain garden
- 1.5" water draining per hour is ideal

Site Assessment Considerations: Soils

- My infiltration rate is only 0.8 inches per hour...will it still work?
 - YES, with some simple amendments or sizing adjustments
- My infiltration rate is only 0.5 inches per hour...will it still work?
 - Perhaps...but find out why

Site Assessment Considerations: Soils

Ball Test: Squeeze a moistened ball of soil in

the hand

- Soils break with slight pressure - Sand or sandy loam
- Stay together but change shape easily Sandy loams and silt loams
- Soils resist breaking clayey or clayey loam

Site Assessment Considerations: Soils

Ribbons less than 1"

- Feels gritty = coarse texture (sandy) soil
- Not gritty feeling = medium texture soil high in silt

• **Ribbons 1-2**"

- Feels gritty = medium texture soil
- Not gritty feeling = fine texture soil
- Ribbons greater than 2" = fine texture (clayey) soil

Site Assessment Considerations: Soils

- Send sample to UMass or Uconn Extension Office for sand/silt/clay and/or nutrient analysis
- Sandy or loamy soils best, but others can be used with amendments

Site Assessment Considerations: Soils

- What if the texture is OK, but the soil doesn't drain?
 - Might mean High water table
 - Pick a different site or see difficult sites information
 - Compaction-the silent killer of rain gardens...
 - New construction especially prone

- AVOID COMPACTION!!!
 - Compacted soil
 will cause a rain
 garden to fail
- If it is highly compacted, need to remove, or loosen and aerate
- SOIL COMPACTION before and during construction

Site Assessment Considerations: Compaction

Site Assessment Considerations: Soil Amendments for Compaction

- For compaction, loosen up and remove some of the compacted soil, and replace with sand/compost mixture
- For clay soils (rare in RI):
 - Make garden larger (based on soil sizing coefficient)
 and shallower, and amend with sand and some compost
- For very sandy soils:
 - Amend with compost to slow down the infiltration
- For urban fill soils, other adjustments may be needed

Louttit Library Soil Considerations

Well-drained
High organic matter
Retain onsite

Not-so-well drained Low organic matter Remove offsite

Louttit Library Site Specific Limitations

- Part shade
- Separategutters
- Slope
- Adjacentplanting bed
- Bench

Rain Garden Elements

Vegetated areas designed to infiltrate and process stormwater

Rain Garden Elements

Berm

- Not necessary on flat slopes
- Necessary on moderate slopes (3-11%)

Depression

– Must be flat, always!

Ponding Area

- Must be flat
- Ponding is good, but not for more than 24 hours

Flow Path / Forebay

Prepared with gravel to slow down inflow of runoff

Ponding is good, but not for more than 24 hours

Ponding area

Flow Path / Forebay

- Where flow is concentrated or coming out of a pipe, provide something to break up the energy
 - Reduces erosion potential

Gravel forebay

Overflow

Overflow consideration

 Identify lawn or wooded area adjacent to rain garden to act as overflow when runoff volume exceeds rain garden capacity

Bioretention Specifics

Bioretention Specifics

- RI Design and Installation Standards Manual defines bioretention soil mix as:
 - 85-88% sand + 8-12% silt + 3-5% leaf compost + 2% clay
 - Addition of 20% volume leaf compost required only with soil depth < 4 ft, or more if soil fine content is < 12%.
- Rain garden soil mix = Native soils amended with compost and mulch layer is recommended

Bioretention Materials

- Soil mix, plants, mulch (underdrain, crushed stone)
- Filter fabric only placed above underdrain
 - Not needed for residential sites
 - Don't line bioretention, don't wrap underdrain pipe
 - Non-woven geotextile

Bioretention: What about a liner?

- Lining is only needed in very specific applications
- Partial lining where you don't want water to go
- Full lining in "hot spots"
 - Gas stations, industrial facilities, brownfield sites
 - Bioretention is just a filter in these cases

Bioretention: Underdrains

- Purpose is to reduce potential for extensive surface ponding
- RI Stormwater Design and Installation Standards Manual recommends underdrains to assist in dewatering
- Highly recommended for commercial/urban bioretention
- Slotted (ADS) or perforated (PVC) pipe at bottom or just above bottom of bioretention, surrounded by crushed stone/gravel blanket

Bioretention: Crushed stone

 1-2 inch washed crushed stone around pipe, then a peastone gravel "blanket" on top, before soil mix gets applied.

References of Interest

RI NEMO

http://www.ristormwatersolutions.org

UCONN NEMO

– http://nemo.uconn.edu/

Low Impact Development

- http://epa.gov/region01/topics/water/lid.html
- http://www.lowimpactdevelopment.org/

GreenScapes New England

– http://epa.gov/region01/topics/waste/greenscapes.html

Rain Gardens

- http://www.raingardennetwork.com/
- http://www.raingardens.org/Index.php
- http://www.dnr.state.wi.us/runoff/rg/